SOLAR ELECTRICITY GENERATION AND THE ELECTRIC BUTTERFLY[™] AN EXPLORATORY STUDY FOR THE JLN SOLAR ELECTRIC BUTTERFLY[™]

AUGUST 2019

BY MIGUEL CONTRERAS, PH.D.

Table of Contents

1 JLN solar's electric butterfly [™]	3
1.1- introduction to the electric butterfly [™]	3
1.2- the power and energy of the electric butterfly [™]	3
1.3- the electric butterfly [™] energy yield in three different geographical locations	3
2 Estimated U.S. Energy Consumption 2018	11
2.1- All sources	11
3 The U.S. Power grid	12
3.1- U.S.A Grid	12
3.2 Sub-grids	13
3.3- Electricity generation by state (2016 EPA data)	14
4 texas electricity generation (ERCOT grid)	16
4.1- tx energy consumption, by source in 2014	16
4.2- tx electricity generation (all sectors)	17
5 the electric butterfly Solution	17
5.1- TX, CA and WI examples	17
5.2- electric vehicle market	19

1.- JLN SOLAR'S ELECTRIC BUTTERFLY[™]

1.1- INTRODUCTION TO THE ELECTRIC BUTTERFLY[™]

The Electric Butterfly[™] is a stand-alone two-axis tracking solar array system that includes a total of 72 solar modules. It features a custom designed gearbox and is built to withstand 140 mph hurricane force winds, tidal surges, class 5 earthquakes, and sandstorms in the stowed position. It is built with American steel.

The unit is self-contained for security and is not dependent on the internet for operation. The units can be built on farmland or ranch land. Unlike single axis trackers, these units can be built on uneven terrain. Furthermore, The units can be built very near populated areas, unlike wind, coal, nuclear or natural gas energy. The units do not produce any noise pollution, greenhouse gas emissions, or catastrophic radiation danger.

1.2- THE POWER AND ENERGY OF THE ELECTRIC BUTTERFLY[™]

The PV Module to be used in the Electric Butterfly, is based on the American invented and developed CIGS (CuInGaSe₂) thin film PV technology. CIGS PV Modules are the most advanced and the most efficient among the thin film technologies. Today, the efficiency of a laboratory solar cell is 23.3%, the champion module efficiency is slightly in excess of 18.5%, and the shipped commercial module is between 14% and 16% efficient. JLN SOLAR,INC. projects its module efficiency resulting from the first pilot 125 MW plant to be between 15% - 16%, with potential continuous improvements towards >18% efficiency. The module is 1240mm x 630mm with a rating of about 120-130 W.

1.3- THE ELECTRIC BUTTERFLY[™] ENERGY YIELD IN THREE DIFFERENT GEOGRAPHICAL LOCATIONS

To model the energy output of the Electric Butterfly, the following assumption are used as input in the NREL PV Watts simulation software:

- 1) Modules are rated at 125W each, thus, 125x72 = 9kW for the system capacity
- 2) dual-axis tracking
- 3) Standard module efficiency of 15%
- 4) Thermal coefficient of power loss -0.47 %/°C
- 5) 10% system losses

6) Inverter efficiency of 96%7) DC to AC size ratio 1.2

8) Three states are modelled:

TX cites of Austin, Fort Stockton, Kingsville CA, cities of Chico and Bakersfield WI, city of Madison

1.3.1- Austin, TX results

PVWatts Calculator

Caution: Photovoltaic system performance predictions calculated by PVWatts[®] include many inherent assumptions and uncertainties and do not reflect variations between PV technologies nor site-specific characteristics except as represented by PVWatts[®] inputs. For example, PV modules with better performance are not differentiated within PVVatts[®] from lesser performing modules. Both NREL and private companies provide more sophisticated PV modeling tools (such as the System Advisor Model at https://sam.net.gov) that allow for more precise and complex modeling of PV systems.

The expected range is based on 30 years of actual weather data at the given location and is intended to provide an indication of the variation you might see. For more information, please refer to this NREL report: The Error Report.

Disclaimer: The PVWatts[®] Model ('Model') is provided by the National Renewable Energy Laboratory ('MREL'), which is operated by the Aliance for Sustainable Energy, LLC ('Aliance') for the U.S. Department of Fenergy ('DDE') and may be used for any purpose whatsoever.

The name DOE/NREL/ALLIANCE shall not be used in any representation, advertising, publicity or other manner whatsoever to endorse or promote any entity that adopts or uses the Model. DOE/NREL/ALLIANCE shall not provide

any support, consulting, training or assistance of any kind with regard to the use of the Model or any updates, revisions or new versions of the Model.

Of the Proton of any spatiality, resource of new versions of the Model. YOU AGREE TO INDEMNEY, DOCINERI, JALINGE, AND TSAFTILATES, OFFICERS, AGENTS, AND EMPLOYEES, OFFICERS, AGENTS, AND EMPLOYEES, CONTROLLING REASONABLE ATTORNEYS TEES, RELATED TO YOUR USE, RELANCE, OR ADOPTION OF THE MODEL FOR ANY PURPOSE WHATSOFWER. THE MODEL IS PROVIDED BY DOE/INEL/ALLIANCE "AS IS" PROTOED BY DOE/INEL/ALLIANCE "AS IS" AND ANY EXPRESS OR IMPLED WARRANTES, INCLUDING BUT NOT IMPLED WHATCH AND ETHNESS FOR A PARTICULAR PROPOSE ARE DRRESS IN SECUMPED. IN NO EVENT SHALL DOE/INEL/ALLIANCE BE LABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL, INDIRECT OR UNITED TO CLAIMS ACTION IN CONTRACT, NEGLEGENCE OR PERFORMANCE OF THE MODEL.

The energy output range is based on analysis of 30 years of historical weather data for nearby, and is intended to provide an indication of the possible interannual variability in generation for a fixed (open rack) PV system at this location.

RESULTS

18,782 kWh/Year*

8/26/19, 7:17 PM

System output may range from 18,147 to 19,304 kWh per year near this location.

Month	Solar Radiation (kWh/m ² /day)	AC Energy (kWh)	Value (\$)
January	5.87	1,324	138
February	6.67	1,343	140
March	6.60	1,454	152
April	7.67	1,626	170
Мау	7.94	1,705	178
June	8.87	1,810	189
July	9.04	1,889	197
August	9.06	1,866	195
September	8.02	1,633	170
October	7.15	1,544	161
November	6.45	1,369	143
December	5.40	1,219	127
Annual	7.40	18,782	\$ 1,960

Requested Location	Ausitin ,tx	
Weather Data Source	Lat, Lon: 30.25, -97.74 1.1 mi	
Latitude	30.25° N	
Longitude	97.74° W	
PV System Specifications (Resider	ntial)	
DC System Size	9 kW	
Module Type	Standard	
Array Type	2-Axis Tracking	
Array Tilt	0°	
Array Azimuth	180°	
System Losses	10%	
Inverter Efficiency	96%	
DC to AC Size Ratio	1.2	
Economics		
Average Retail Electricity Rate	0.104 \$/kWh	

https://pvwatts.nrel.gov/pvwatts.php

1.3.2- Fort Stockton, TX

RESULTS

PVWatts Calculator

Caution: Photovolatic system performance predictions calculated by PWatta® includ many inherent assumptions an uncertainties and do not reflect variation between PV technologies nor site-specif characteristics except as represented b PWatta® inputs. For example, PV module with better performance are no differentiated within PWatta® from lass performing modules. Both NREL and privat companies provide models and the System Advisc Model at https://sm.nnet.gov) that allow (for Model at https://sm.nnet.gov) that allow (for Model at https://sm.nnet.gov) that allow (for modeling tools (such as the System Advisc

The expected range is based on 30 years of actual weather data at the given location and is intended to provide an indication of the variation you might see. For more information, please refer to this NREL report: The Firm Renort.

Disclaimer: The PVWatts⁽⁸⁾ Model ("Model") is provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC ("Alliance") for the U.S. Department OF Energy ("DOE") and may be used for any purpose whatsoever.

The names DOE/NREL/ALLIANCE shall not be used in any representation, advertising, publicity or other manner whatsoever to endorse or promote any entity that adopts or uses the Model. DOE/NREL/ALLIANCE shall not provide

any support, consulting, training or assistance of any kind with regard to the use of the Model or any updates, revisions or new versions of the Model.

New versions of the Model. VOU AGREE TO INDEWNIFY ODOPRELIALINATE, AND ITS AFFLIATES, DOPRELIALINATE, AND ITS AFFLIATES, MODERNE, AND TO AFFLIATES, AGAINST ANY CLAW OF DE PARMO, MODERNE, AND TO YOUR USE, RELINGE, AGAINST ANY CLAW OF DE PARMO, INCLUDING RESONABLE ATTORNEYS FEES, RELATED TO YOUR USE, RELINGE, AND ANY EXPESSION OF INTERNATION PROVIDED BY DOORNEL/LILLINGE' AS IS' MOD ANY EXPESSION OF INTERNATION MICHAEVANABILITY AND FITNESS FOR A M

The energy output range is based on analysis of 30 years of historical weather data for nearby, and is intended to provide an indication of the possible interannual variability in generation for a Fixed (open rack) PV system at this location.

	_,		,
Month	Solar Radiation	AC Energy	Value
	(kWh / m ² / day)	(800)	(*)
January	8.07	1,782	196
February	8.20	1,636	180
March	9.48	2,066	227
April	10.17	2,106	231
Мау	10.47	2,192	241
June	10.66	2,169	238
July	10.42	2,157	237
August	9.56	1,998	219
September	9.20	1,853	203
October	8.35	1,792	197
November	7.71	1,646	181
December	7.43	1,652	181
Annual	9.14	23,049	\$ 2,531
Location and Station Ide	entification		
Requested Location	fort stokton	, tx	
Weather Data Source	Lat, Lon: 30	.89, -102.9 1.0 mi	
Latitude	30.89° N		
Longitude	102.9° W		
PV System Specification	ns (Residential)		
DC System Size	9 kW		
Module Type	Standard		
Array Type	2-Axis Tracl	king	
Array Tilt	0°		
Array Azimuth	180°		
System Losses	10%		
Inverter Efficiency	96%		
DC to AC Size Ratio	1.2		
Economics			
Average Retail Electricity R	ate 0.110 \$/kWh		
Performance Metrics			
Capacity Factor	29.2%		

https://pvwatts.nrel.gov/pvwatts.php

Page 1 of 1

9/3/19, 10:21 PM

23,048 kWh/Year*

6

PVWatts Calculator

Caution: Photovohaic system performance, predictors calculated by FWAtts¹⁵ Rouber may inhere assumptions and uncertainties and do not reflect variations between PV technologies nor steespecific characteristics except as represented by Watts¹⁵ Impacts For example, PV modules with better performance are not dimension within FWAtts¹⁵ Impacts and provides the provide the steeper of dimension within the point and and dimension within the point and the dimension within the point and the companies provide more subjectived by Model at https://am.mel.gov/ that allow for more precise and complex modeling of PV systems.

The expected range is based on 30 years of actual weather data at the given location and is intended to provide an indication of the variation you might see. For more information, please refer to this NREL report: The Error Report.

Disclaimer: The PVWatts[®] Model ("Model") is provided by the National Renevable Energy Laboratory ("NRL"), which is operated by the Alliance for Sustainable Energy, LLC ("Alliance") for the U.S. Department of Ferrgy ("DOE") and may be used for any purpose whatsoever.

The names DOE/NREL/ALLIANCE shall not be used in any representation, advertising, publicity or other manner whatsoever to endorse or promote any entity that adopts or uses the Model. DOE/NREL/ALLIANCE shall not provide

The energy output range is based on analysis of 30 years of historical weather data for nearby, and is intended to provide an indication of the possible interannual variability in generation for a Fixed (open rack) PV system at this location.

RESULTS

19,201 kWh/Year*

System output may range from 18,706 to 19,773 kWh per year near this location.

Month	Solar Radiation (kWh/m ² /day)	AC Energy (kWh)	Value (\$)	
January	5.47	1,232	135	
February	6.72	1,333	146	
March	7.20	1,569	172	
April	7.81	1,631	179	
Мау	8.27	1,756	193	
June	9.46	1,962	215 215	
July	9.23	1,955		
August	9.22	1,947	214	
September	7.55	1,557	171	
October	7.92	1,702	187	
November	6.45	1,368	150	
December	5.35	1,190	131	
Annual	7.55	19,202	\$ 2,108	

Location and Station Identification	
Requested Location	Kingsville, TX
Weather Data Source	Lat, Lon: 27.49, -97.86 1.2 mi
Latitude	27.49° N
Longitude	97.86° W
PV System Specifications (Residen	ntial)
DC System Size	9 kW
Module Type	Standard
Array Type	2-Axis Tracking
Array Tilt	0°
Array Azimuth	180°
System Losses	10%
Inverter Efficiency	96%
DC to AC Size Ratio	1.2
Economics	
Average Retail Electricity Rate	0.110 \$/kWh
Performance Metrics	
Capacity Factor	24.4%

https://pvwatts.nrel.gov/pvwatts.php

1.3.4- Chico, CA results

PVWatts Calculator

Caution: Photovoltaic system performance predictions calculated by PWWatts[®] include many inherent assumptions and uncetainties and do not reflect variations between PV technologies nor site-specific characteristics except as represented by PWWatts[®] inputs. For example, PV modules with better performance are not differentiated within PVWatts[®] from lesser performing modules. Both NREL and private companies provide more sophisticated PV modeling tools (such as the system Advisor Model at https://sam.nrel.gov) that allow for more precise and complex modeling of PV systems.

The expected range is based on 30 years of actual weather data at the given location and is intended to provide an indication of the variation you might see. For more information, please refer to this NREL report: The Error Report.

Disclaimer: The PVWatts[®] Model ('Model') is provided by the National Renewable Energy Laboratory ('NREL'), which is operated by the Alliance for Sustainable Energy, LLC ('Alliance') for the LLS. Department Of Energy ('DOE') and may be used for any purpose whatsoever.

The names DOE/NREL/ALLIANCE shall not be used in any representation, advertising, publicity or other manner whatsoever to endorse or promote any entity that adopts or uses the Model. DOE/NREL/ALLIANCE shall not provide

any support, consulting, training or assistance of any kind with regard to the use of the Model or any updates, revisions or new versions of the Model.

The induce of any cylones, revealed of new versions of the Model. YOU AGREE TO INDERMIP DOCINNELLAINNEE, AND TS AFTILAITES, OFFICIESS, AGENTS, AND EMPLOYES, OFFICIESS, AGENTS, AND EMPLOYESS, FEES, RELATED TO VOIR USE, RELAINCE, OR ADOPTION OF THE MODEL TO ANNU PURPOSE WHATSOLVER. THE MODEL IS PROVIDED BY DOE/INELLAILINNEE "AS IS" PROVIDED BY DOE/INELLAILINNEE "AS IS" PROVIDED BY DOE/INELLAILINNEE "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO THE MYLED WARRANTIES OF MERCHANTABILITY AND ETIMESS FOR A PARTICULAR PROPSE ARE EXPRESSI DISCLUMED. IN NO EVENT SHALL DOE/INELLAILINGE BUT INDE STATUSCIES, INCLUDING BUT NOT LIMITED TO CLAIN SPECIAL, INDIRECT OR CONSEQUENTIAL, INCLUDING BUT NOT LIMITED TO TAINSOLVER, INCLUDING BUT NOT LIMITED TO CLAINSOLVER, INC

The energy output range is based on analysis of 30 years of historical weather data for nearby, and is intended to provide an indication of the possible interannual variability in generation for a Fixed (open rack) PV system at this location.

RESULTS

_

_

20,697 kWh/Year*

System output may range from 19,975 to 21,300 kWh per year near this location.

Month	Solar Radiation (kWh/m ² /day)	AC Energy (kWh)	Value (\$)
January	4.52	1,021	159
February	5.11	1,045	163
March	7.01	1,588	248
April	8.66	1,868	291
Мау	10.28	2,206	344
June	11.70	2,335	364
July	12.08	2,453	382
August	11.29	2,309	360
September	9.88	1,970	307
October	7.95	1,698	265
November	5.57	1,193	186
December	4.46	1,011	158
Annual	8.21	20,697	\$ 3,227

Location and Station Identification

Requested Location	Chico, CA
Weather Data Source	Lat, Lon: 39.73, -121.82 1.0 mi
Latitude	39.73° N
Longitude	121.82° W
PV System Specifications (Resident	tial)
DC System Size	9 kW
Module Type	Standard
Array Type	2-Axis Tracking
Array Tilt	0°
Array Azimuth	180°
System Losses	10%
Inverter Efficiency	96%
DC to AC Size Ratio	1.2
Economics	
Average Retail Electricity Rate	0.156 \$/kWh

https://pvwatts.nrel.gov/pvwatts.php

1.3.5- Bakersfield, CA results

RESULTS

PVWatts Calculator

Photovoltaic system perfo s calculated by PVWatts⁽⁸⁾ inherent assumptions ties and do not reflect va PV technologies nor sitevide more (such as ti

ted range is based on 30 years of ther data at the given location inded to provide an indication of ion you might see. For more , please refer to this NREL report:

er: The PVWatts[®] Model ("Model") ided by the National Renewable Laboratory ("NREL"), which is d by the Alliance for Sustainable LLC ("Alliance") for the U.S. ent Of Energy ("DOE") and may be any purpose whatsoever.

The names DOE/NREL/ALLIANCE shall not be used in any representation, advertising, publicity or other manner whatsoever to endorse or promote any entity that adopts or uses the Model. DOE/NREL/ALLIANCE shall wide

an support, consulting, training or assistance of any kind with regard to the use of the Model or any updates, revisions or new versions of the Model.

VIUU ACRE TO INDEMNIFY DOE/INEE/ALLIANCE, AND ITS AFFLIATES, OFFICERS, ACARTS, AND DEM/LOYEES ACAINST ANY CLAIM OR DEMAND, INCLUDING REASONABLE ATTORNEYS FEES, RELATED TO YOUR USE, RELIANCE, OR ADOPTION OF THE MODEL FOR ANY PURPOSE WHATSCEVER. THE MODEL IS PROVIDED RY NOFINEFI ALLIANCE "AS TS AT OF THE MODEL HATSOEVER. THE I Y DOE/NREL/ALLIANI EXPRESS OR IN INCLUDING B THE IMPLIED WARK/ SILITY AND FITNES PURPOSE ARE E IN NO EVENT LIANCE BE LIABLE ANY DAMAGES WHA INDIRECT OR CONSEQUENTIAL OR ANY DAMAGES WHATSOEVER, G BUT NOT LIMITED TO CLAIMS 2D WITH THE LOSS OF DATA OR WHICH MAY RESULT FROM ANY N CONTRACT, NEGLIGENCE OR RTIOUS CLAIM THAT ARISES OUT CONNECTION WITH THE USE OR INCE OF THE MODEL.

The energy output range is based on analysis of 30 years of historical weather data for nearby , and is intended to provide an indication of the possible interannual variability in generation for a Fixed (open rack) PV system at this location.

RESULTS		22.421 kV	Vh/Year*
	System output may rar	nge from 21,149 to 23,244 kWh per	year near this location.
Month	Solar Radiation (kWh/m ² /day)	AC Energy (kWh)	Value (\$)
January	5.22	1,161	181
February	6.42	1,313	205
March	8.30	1,830	285
April	9.34	1,982	309
Мау	10.82	2,342	365
June	12.08	2,501	390
July	11.67	2,439	380
August	11.23	2,320	362
September	10.19	2,058	321
October	8.17	1,743	272
November	6.81	1,446	225
December	5.59	1,284	200
Annual	8.82	22,419	\$ 3,495
Location and Station Identi	fication		
Requested Location	bakersf	ield, ca	
Weather Data Source	Lat, Lor	n: 35.37, -119.02 0.2 mi	
Latitude	35.37° N	ı	
Longitude	119.02°	w	
PV System Specifications ((Residential)		
DC System Size	9 kW		
Module Type	Standar	ď	
Array Type	2-Axis T	Tracking	
Array Tilt	0°		
Array Azimuth	180°		
System Losses	10%		
Inverter Efficiency	96%		
DC to AC Size Ratio	1.2		
Economics			
Average Retail Electricity Rate	0.156 \$/	kWh	
Performance Metrics			
Capacity Factor	28.4%		

https://pvwatts.nrel.gov/pvwatts.php

Page 1 of 1

9/3/19, 10:18 PM

1.3.6- Madison, WI results

PVWatts Calculator

Caution: Photovoltaic system performance predictions calculated by PWWatts[®] include many inherent assumptions and uncertainties and do not reflect variations between PV technologies nor site-specific characteristics except as represented by PWWatts[®] inputs. For example, PV modules with better performance, are not differentiated within PWWatts[®] from lesser performing modules. Both NREL and private companies provide more sophisticated PV Modeling tools (such as the System Advisor Model at https://am.mreigon/ that allow for more precise and complex modeling of PV system.

The expected range is based on 30 years of actual weather data at the given location and is intended to provide an indication of the variation you might see. For more information, please refer to this NREL report: The Error Report.

Disclaimer: The PVWatts[®] Model ('Model') is provided by the National Renewable Energy Laboratory ('MREL'), which is operated by the Aliance for Sustainable Energy, LLC ('Aliance') for the U.S. Department of Fenergy ('DDE') and may be used for any purpose whatsoever.

The names DOE/NRL/ALLIANCE shall not be used in any representation, advertising, publicity or other manner whatsoever to endorse or promote any entity that adopts or uses the Model. DOE/NREL/ALLIANCE shall not provide

any support, consulting, training or assistance of any kind with regard to the use of the Model or any updates, revisions or new versions of the Model.

of the Model or any updates, revisions or new versions of the Model. VOU AGREE TO INDERMITY ODE/INEE/LAIMINEE, AND TEX SHILLATES, OFFICESS, AGENTS, AND EMPLOYEDS, GAINST ANY CLAIM OR DEMAND, INCLIDING REASONABLE ATTORNEYS FEES, RELATED TO VOUR USE, RELANCE, OR ADOPTION OF THE MODEL FOR ANY URPOSE WHATSOEVER. THE MODEL IS PROVIDED BY DOE/INEL/ALLIANCE "AS IS" PROVIDED BY DOE/INEL/ALLIANCE "AS IS" DISCLIMED. IN NO EVENT SHALL INITED TO THE MILED WARRANTES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PROFSE ARE EXPRESSLY DISCLIMED. IN NO EVENT SHALL DOE/INEL/LAIMACE BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL, INDIRECT ON CONSEQUENTIAL, DARAGES OR ANY DAMAGES WHATSO OF DATA ON PROTING INFOLMACE BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DARAGES OR ANY DAMAGES WHATSO OF DATA ON PROTING INFOLMACE BE LIABLE SO IT OF OR IN CONNECTION WITH THE USE OR PROTING INFOLMACE THE LIABLES OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THE MODEL.

The energy output range is based on analysis of 30 years of historical weather data for nearby, and is intended to provide an indication of the possible interannual variability in generation for a Fixed (open rack) PV system at this location. **RESULTS**

17,239 kWh/Year*

8/26/19, 7:20 PM

System output may range from 15,980 to 18,627 kWh per year near this location.

Month	Solar Radiation (kWh/m ² /day)	AC Energy (kWh)	Value (\$)
January	3.94	974	154
February	5.08	1,107	175
March	6.24	1,484	234
April	6.79	1,530	242
Мау	7.74	1,746	276
June	8.64	1,872	296
July	8.89	1,918	303
August	8.11	1,790	283
September	7.34	1,594	252
October	5.61	1,302	206
November	4.33	1,018	161
December	3.65	905	143
Annual	6.36	17,240	\$ 2,725

Location and Station Identification

Requested Location	Madison, WI
Weather Data Source	Lat, Lon: 43.09, -89.38 1.1 mi
Latitude	43.09° N
Longitude	89.38° W
PV System Specifications (Resident	ial)
DC System Size	9 kW
Module Type	Standard
Array Туре	2-Axis Tracking
Array Tilt	0°
Array Azimuth	180°
System Losses	10%
Inverter Efficiency	96%
DC to AC Size Ratio	1.2
Economics	
Average Retail Electricity Rate	0.158 \$/kWh

https://pvwatts.nrel.gov/pvwatts.php

2.- ESTIMATED U.S. ENERGY CONSUMPTION 2018

2.1- ALL SOURCES

As of 2018, the estimated U.S. energy consumption to generate electricity was 38.2 Quads.

A quad is a unit of energy equal to 10^{15} (a short-scale quadrillion) BTU, or 1.055×10^{18} joules in SI units.

3.- THE U.S. POWER GRID

3.1- U.S.A GRID

In the U.S.A, smaller local electricity grids are interconnected to form larger networks for reliability and commercial purposes. At the highest level, the U.S. power system in the Lower 48 states is made up of three main interconnections, which operate largely independently from each other with limited transfers of electricity between them.

1) The Eastern Interconnection encompasses the area east of the Rocky Mountains and a portion of the Texas panhandle.

2) The Western Interconnection encompasses the area from the Rockies to the west.

3) The Electric Reliability Council of Texas (ERCOT) covers most of Texas.

U.S. electric power regions

Note: The locations of the electric systems are illustrative and are not geographically accurate. The sizes of the circles roughly indicate the size of the electric system.

3.2 SUB-GRIDS

The three main grids in the USA are fed from smaller grids (sub-region) grouped and depicted in the following Figure.

For these sub-regions, according to the EPA, and as of the most recent data available (2016), the output and energy mix is tabulated as follows:

2. Subregion Resource Mix (eGRID2016)														
							C	Seneratio	n Resour	ce Mix (per	cent)*			
eGRID subregion acronym	eGRID subregion name	Nameplate Capacity (MW)	Net Generation (MWh)	Coal	Oil	Gas	Other Fossil	Nuclear	Hydro	Biomass	Wind	Solar	Geo- thermal	Other unknown/ purchased fuel
AKGD	ASCC Alaska Grid	2,406	4,705,316	12.6	9.2	61.9	0.0	0.0	12.6	0.9	2.9	0.0	0.0	0.0
AKMS	ASCC Miscellaneous	1,033	1,629,718	0.0	24.6	7.9	0.0	0.0	65.4	0.0	2.1	0.0	0.0	0.0
AZNM	WECC Southwest	63,308	166,327,576	29.5	0.1	39.8	0.0	19.5	3.5	0.4	1.2	2.8	3.2	0.0
CAMX	WECC California	110,656	200,602,485	4.3	0.1	48.4	0.7	9.4	12.1	2.9	7.0	10.6	4.1	0.2
ERCT	ERCOT All	159,336	389,939,062	25.9	0.0	48.2	0.5	10.8	0.3	0.3	13.7	0.2	0.0	0.2
FRCC	FRCC All	97,820	229,407,929	16.0	1.2	66.6	0.0	12.8	0.1	2.4	0.0	0.1	0.0	0.7
HIMS	HICC Miscellaneous	1,164	2,741,704	0.2	61.7	0.0	0.0	0.0	3.3	4.3	14.8	2.1	9.5	4.1
HIOA	HICC Oahu	2,338	7,207,141	20.7	68.7	0.0	0.9	0.0	0.0	6.1	3.2	0.4	0.0	0.0
MROE	MRO East	11,271	20,471,860	64.5	0.6	20.5	0.1	0.0	6.8	5.3	2.0	0.0	0.0	0.1
MROW	MRO West	74,698	218,204,106	52.7	0.2	6.7	0.0	12.8	5.0	1.3	21.1	0.0	0.0	0.2
NEWE	NPCC New England	44,890	107,729,043	2.4	0.6	49.8	0.1	30.4	5.3	8.2	2.5	0.7	0.0	0.1
NWPP	WECC Northwest	90,679	284,912,897	22.5	0.2	15.3	0.3	3.4	47.2	1.3	8.6	0.5	0.7	0.1
NYCW	NPCC NYC/Westchester	16,614	44,416,982	0.0	0.4	64.6	0.0	34.1	0.0	0.9	0.0	0.0	0.0	0.0
NYLI	NPCC Long Island	6,275	11,777,168	0.0	2.7	88.5	0.0	0.0	0.0	8.0	0.0	0.8	0.0	0.0
NYUP	NPCC Upstate NY	30,844	84,093,338	2.1	0.2	27.7	0.0	31.4	31.6	2.1	4.7	0.1	0.0	0.0
RFCE	RFC East	98,917	283,222,518	17.6	0.2	38.0	0.2	39.7	0.9	1.9	1.0	0.4	0.0	0.0
RFCM	RFC Michigan	32,930	92,326,063	41.5	0.9	31.4	1.9	17.5	0.0	2.0	4.8	0.0	0.0	0.0
RFCW	RFC West	185,858	533,500,666	49.8	0.4	16.7	0.7	27.6	0.9	0.6	3.2	0.1	0.0	0.1
RMPA	WECC Rockies	23,339	63,912,177	51.3	0.0	20.2	0.0	0.0	12.1	0.3	15.1	0.8	0.0	0.1
SPNO	SPP North	28,326	66,741,590	57.9	0.1	9.5	0.0	12.4	0.3	0.1	19.8	0.0	0.0	0.0
SPSO	SPP South	61,022	156,780,737	34.8	1.9	40.7	0.2	0.0	3.6	1.5	17.1	0.1	0.0	0.1
SRMV	SERC Mississippi Valley	58,822	172,359,088	14.0	1.1	58.7	1.4	21.2	1.4	1.8	0.0	0.0	0.0	0.4
SRMW	SERC Midwest	38,432	121,294,301	71.4	0.1	8.3	0.0	15.1	1.2	0.1	3.5	0.0	0.0	0.2
SRSO	SERC South	87,370	264,562,049	28.9	0.1	47.0	0.0	18.2	2.0	3.5	0.0	0.3	0.0	0.0
SRTV	SERC Tennessee Valley	73,446	222,211,053	43.7	0.6	23.4	0.0	25.1	6.4	0.8	0.0	0.1	0.0	0.0
SRVC	SERC Virginia/Carolina	113,211	324,246,074	24.9	0.2	29.5	0.1	39.6	1.5	2.8	0.2	1.1	0.0	0.1
U.S.		1,515,007	4,075,322,641	30.4	0.6	33.8	0.3	19.8	6.4	1.7	5.6	0.9	0.4	0.1
*percentages	s may not sum to 100 due to rou	unding												

Created: 2/15/2018

3.3- ELECTRICITY GENERATION BY STATE (2016 EPA DATA)

By estate, the EPA estimates the annual net generation shown in the table bellow.

DC FL GA HI IA ID IL IN KS KY LA

State abbreviation	State annual net generation (MWh)	
PSTATABB	STNGENAN	
AK	6,335,034	
AL	142,863,240	
AR	60,445,059	
AZ	108,734,631	
CA	197,323,837	
со	54,418,480	
СТ	36,496,560	

76,474
8,731,261
238,226,428
132,902,274
9,948,845
54,396,531
15,660,938
187,437,381
101,397,209
47,599,990
80,273,501
106,842,115

MA	31,951,671	OH	118,922,078
MD	37,166,747	ОК	78,655,008
ME	11,514,427	OR	60,181,812
MI	112,121,790	PA	215,066,508
MN	60,036,476	RI	6,564,885
МО	78,611,513	SC	96,985,764
MS	62,881,295	SD	10,289,416
MT	27,783,530	TN	79,340,633
NC	130,768,153	ТХ	453,941,342
ND	37,856,452	UT	38,133,928
NE	37,197,843	VA	92,554,816
NH	19,282,493	VT	1,911,207
NJ	77,598,197	WA	114,086,583
NM	32,922,552	WI	64,966,611
NV	39,228,694	WV	75,942,968
NY	134,090,833	WY	46,656,630

4.- TEXAS ELECTRICITY GENERATION (ERCOT GRID)

4.1- TX ENERGY CONSUMPTION, BY SOURCE IN 2014

A snapshot of TX energy

Texas is the leading U.S. producer of both crude oil and natural gas. In 2017, the state accounted for 37% of the nation's crude oil production and 24% of its marketed natural gas production.

As of January 2018, the 29 petroleum refineries in Texas were able to process more than 5.7 million barrels of crude oil per day and accounted for 31% of the nation's refining capacity.

Texas leads the nation in wind-powered generation and produced one-fourth of all the U.S. wind powered electricity in 2017. Texas wind turbines have produced more electricity than both of the state's nuclear power plants since 2014.

Texas produces more electricity than any other state, generating almost twice as much as Florida, the second-highest electricity-producing state.

Texas is the largest energy-producing state and the largest energy-consuming state in the nation. The industrial sector, including its refineries and petrochemical plants, accounts for half of the energy consumed in the state.

4.2- TX ELECTRICITY GENERATION (ALL SECTORS)

According to the government data above (EIA and EPA), Texas as of 2016 generated (approximately) between 390,000,000 and 453,941,342 MWh on an annual basis. And only 0.2% of this generation came from solar.

5.- THE ELECTRIC BUTTERFLY SOLUTION

5.1- TX, CA AND WI EXAMPLES

5.1.1- TEXAS

Considering the most recent data on the annual electricity generated in TX (453,941,342 MWh), we can estimate

453,941,342,000 kWh / 18,782 kWh = **24,169,000** Electric Butterflies would be needed in the Austin, TX area to supply the entire state of TX with its demand for electricity

453,941,342,000 kWh / 23,048 kWh =**19,695,477** Electric Butterflies would be needed in the Fort Stockton, TX area to supply the entire state of TX with its demand for electricity

453,941,342,000 kWh / 19,201 kWh =**23,641,547** Electric Butterflies would be needed in the Kingsville, TX area to supply the entire state of TX with its demand for electricity

5.1.2- CALIFORNIA

Similarly, for CA

197,323,837,000 kWh / 20,697 kWh = 9,533,934 Electric Butterflies would be needed in the Chico, CA area to supply the entire state of CA with its demand for electricity

197,323,837,000 kWh / 22,421 kWh = **8,800,849** Electric Butterflies would be needed in the Bakersfield, CA area to supply the entire state of CA with its demand for electricity

5.1.3- WISCONSIN

Similarly, for WI

46,656,630,000 kWh / 17,239 kWh = 2,706,458 Electric Butterflies would be needed in the Madison, WI area to supply the entire state of WI with its demand for electricity

All of the above figures consider a standard module efficiency of 15%. Higher efficiencies will reduce the number of electric Butterflies accordingly.

For instance, and to a first approximation, the number of Electric Butterflies needed to supply a given demand, would be reduced by 25% if PV modules with an efficiency of 20% are employed. Similarly, a projected module efficiency of 18% is used, the number of Electric Butterfly units can be reduced by approximately 17%.

5.2- ELECTRIC VEHICLE MARKET

It is projected that the plug-in electric vehicle market will have an electricity demand of 1,200 billion kWh by the year 2040.

Considering a sunny location like Chico, CA (or similar) where the Electric Butterfly can generate up to 20,497 kWh/year, we can estimate from

1,200 billion kWh / 20,497 kWh =0.0585 billion (or **58.5 million**) Electric Butterflies could supply that entire market segment.

REFERENCES

1) Energy Information Agency (<u>www.eia.gov</u>)

2) EPA (www.epa.gov)